

Solenoid valve catalog model DCF_F

Model no. and main technical parameters

Explosion-proof valve model no. as well as the meaning of explosion-proof mark.

Specific explanations of Explosion proof mark EXmb II T4:

EX: Explosion proof mark

mb: m-encapsulation / class b-protection class.(Piase follow the fourth/Installation , Usage and Attendance of the

specification while using,in order to insure explosion proof performance)

II: class II used by the factory, involving explosive gas usable range is allowed (GB3836.1-2000)

T4: Temperature class. the maximum surface temperature of the valve sheii:135"C (GB3836.1-2000)

e Specific explanations of DIP A20 TA, T4 IP65:

DIP: preventing dust igniting mark

A20: A type 20 area,the solenoid valve shell with IPX capability A type dust-tight protection can work normally in the

area(20 area) which combustible dust emerged conlinuously and regularly.

TA,T4· the max1mum surface temperature of the valve shell while running TA < 130° / T4-Temperature class

IP65: IP- Grade of protection; 6- when the solenoid valve is enclosed totally, within the valve body under the pressure

of 20 mpa, the dust should not be intrusive, 5-prevent water jet from any direction

- 2.2 Matn techn1cal parameters:
- a. Rated voltage: AC220V/DC 24V
- b Rated power: 16W/30VA
- c. Character of service: Pulsing system
- d.Protection grade: IP65

Instruction to the Structure

3.1 Explosion-proof valve is mainly consisted of valve body

and winding insulation, valve body is made of casting zinc aluminum material.

3.2 Explosion-proof valve and the outer shape structure as

back view.

3.3 The winding insulation of Explosion-proof valve is a

independent unity of solenoid coil mould pressing pour

enveloped by high-performance engineering plastics. pour enveloping material with stability of chemistry, thermal engineering and mechanical.

3.4 Explosion-proof valve is pneumoelectric isolation structure

with reliable tightness of gas circuit.

Explosion-proof main points

4.1 When designing the structure for the Explosion-proof valve. we commence on the key points such as outer shell strength.

the material of outer shell parts and pour enveloping flux, restriction on the temperature of outer shell to ensure the

performance of explision proof.

- 4.2 When Explosion-proof valve works properly, the surface temperature can not be more than 130C.
- 4.3 The outlet line of power supply with leak length no less than 1m.
- 44 When connecting lines of Explosion-proof valve in dangerous place, it should be switched in the connection box with

same explosion-proof level by suitable duct-systems.

- 4.5 The apparent parts of Explosion-proof valve should has permanent mark "Exmb II T4, DIP A20 TA, T4".
- 4.6 In the circuit of Explosion-proof valve. it should be set up with protective electric elements for overloading and Short
- circuit. (Such as ceramic tube rapid fuse, but not glass tube fuse).
- 4.7 Explos1on-proof valve with protection levei1P65.

Model specification

	Explosion - Proof	Gagelattice	Nominal Diameter		
type	Valve type		(mm)		
	DCF_F_2L_B	3/4"	20		
	DCF_F_Z_20	3/4"	20		
Right_Angle	DCF_F_Z_25	1"	25		
3 = 3	DCF_F_Z_40S	1 1/2"	40		
Type valve	DCF_F_Z_50S	2"	50		
	DCF_F_Z_62S	2 1/2"	62		
	DCF_F_Z_76\$	3"	76		
	DCF_F_ZM_20	3/4"	20		
Outerthread valve	DCF_F_ZM_25	1"	25		
	DCF_F_ZM_40S	1 1/2"	40		
	DCF_F_Y_25	1"	25		
	DCF_F_Y_40S	1 1/2"	40		
	DCF_F_Y_50S	2"	50		
Submerged	DCF_F_Y_62S	2 1/2"	62		
Type valve	DCF_F_Y_76S	3"	76		
Type valve	DCF_F_Y_80	3"	80		
	DCF_F_Y_90S	3 1/2"	90		
	DCF_F_Y_102S	4"	102		

Explosion-proof electromagnetic pulse valve structure, shape and installation dimension

Angle type Explosion-proof Pulse valve IDCF-F-Z type and DCF-F-2L-B type)

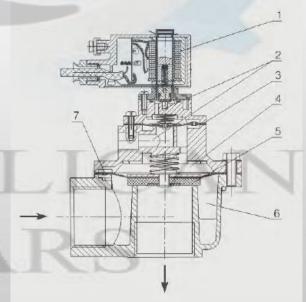
Perating principle

Explosion-proof pulse valve consists of explosion-proof solenoid pilot device. membrane and explosion-proof valve body.

The area of valve back cavity is greater than the front cavity, the membrane is kept at the closed position due to effect of pressure differential.

Pulse timer sending signal so that explosion-proof solenoid pilot pull in the moving bar after receipt of the signal, open up the

unloading hole to release the pressure gas in the back cavity of membrane quickly, the pressure gas in the front cavity holds up

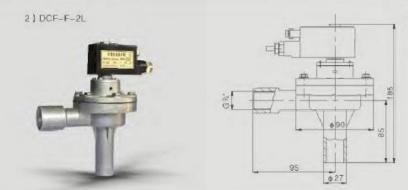

the membrane to unfold the passage and the pulse valve starts blowing.

The pulse s1gnal disappears and explosion-proof solenoid pilot reset immediately so as to close the unloading hole.

The pressure gas in the back cavity of the membrane and spring work together to close the passage and valve stops blowing.

The orifice in the membrane functions to damp the airflow when the moving bar holds up for unloading and transit the gas to

the back cavity as soon as the unloading hole s shut to close the passage and stop blowing.



Structure chart

- 1 explosion-proof coil
- 2 Balancing hole
- 3 small diaphragm
- 4 Back cavity of diaphragm
- 5 big diaphragm
- 6 Front cavity of diaphragm
- 7 Orifice

Reference on installanion dimension

Model	Ф	Α	В	С	D	F
DCF_F_Z_20	80	88	128	48	20	22
DCF_F_Z_25	96	113	136	65	24	27
DCF_F_Z_40S	112	131	180	75	34	28
DCF_F_Z_50S	160	180	206	100	43	36
DCF_F_Z_62S	188	204	226	110	49	37
DCF_F_Z_76\$	200	220	250	120	59	38

External thread explosion-proof pulse valveiDCF-F-ZM type)

Perating principle

Explosion-proof pulse valve consists of explosion-proof solenoid pilot device, membrane and explosion-proof valve body.

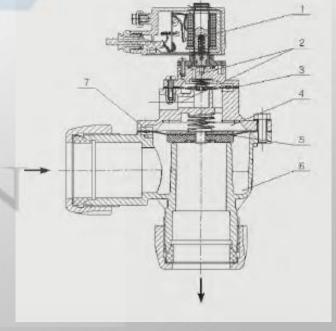
The area of valve back cavity is greater than the front cavity, the membrane is kept at the closed position due to effect of pressure differential.

Pulse timer sending signal so that explosion-proof solenoid pilot pull in the moving bar after receipt of the signal, open up the

unloading hole to release the pressure gas 1n the back cav1ty of membrane qu1ckly, the pressure gas in the front cavity holds up

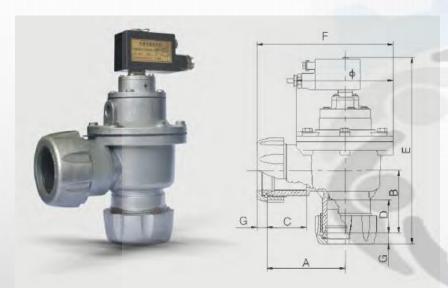
the membrane to unfold the passage and the pulse valve starts blowing.

The pulse signal disappears and explosion-proof solenoid pilot reset immediately so as to close the unloading hole.


The pressure gas in the back cavity of the membrane and spring work together to close the passage and valve stops blowing.

The orifice in I he membrane functions to damp the airflow when the moving bar holds up for unloading and transit the gas to

the back cavity as soon as the unloading hole is shut to close the passage and stop blowing.


Structure chart

- 1 explosion-proof coil
- 2 Balancing hole
- 3 small diaphragm
- 4 Back cavity of diaphragm
- 5 big diaphragm
- 6 Front cavity of diaphragm
- 7 Orifice

Reference on installanion dimension

1) DCF-F-ZM

Model	Connection	(mm)							
	Ventilation	Α	В	С	D	E	F	G	Ф
	tube diameter								
DCF_F_ZM_20	Ф27	67	45	26	26	162	118	12.7	80
DCF_F_ZM_25	Ф34	78	70	32	38	192	139	13	96
DCF_F_ZM_40S	Ф48	103	78	51	42	236	170	13.3	112

immersion type explosion-proof pulse valve DCF-F type)

Perating principle

Explosion-proof pulse valve consists of explosion-proof solenoid pilot device, membrane and explosion-proof valve body.

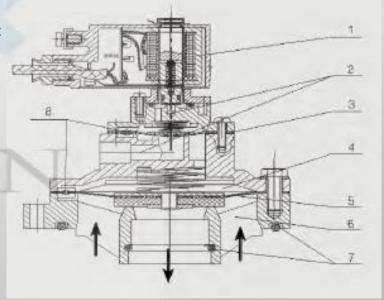
The area of valve back cavity is greater than the front cavity, the membrane is kept at the closed position due to effect of pressure differential.

Pulse timer sending s1gnal so that explosion-proof solenoid pilot pull in the moving bar after receipt of the signal, open up the

unloading hole to release the pressure gas in the back cavity of membrane quickly, the pressure gas in the front cavity holds up

the membrane to unfold the passage and the pulse valve starts blowing.

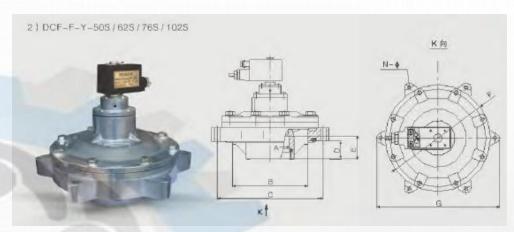
The pulse signal disappears and explosion-proof solenoid pilot reset immediately so as to close the unloading hole.


The pressure gas in the back cavity of the membrane and spring work together to close the passage and valve stops blowing.

The orifice in the membrane functions to damp the a1rflow when the mov1ng bar holds up for unload1ng and transit the gas to

the back cavity as soon as the unloading hole is shut to close the passage and stop blowing.

Structure chart


- 1 explosion- proof coil
- 2 Balancing hole
- 3 small diaphragm
- 4 Back cavity of diaphragm
- 5 big diaphragm
- 6 Front cavity of diaphragm
- 7 Seal ing ring
- 8 Orifice

Reference on installanion dimension

		A B C) -	
Model		Point gas	box and nozz	le connector	installation re	feren c e size	
	Α	В	С	D	/ E	F	R
DCF_F_Y_25	G1"	Ф59	Ф96	13	33	40	3
DCF_F_Y_40S	G1/2"	Ф73	Ф112	16	40	41	3.5

Model	Point Gas Box and Nozzle connector installation reference size							
	Α	В	С	D	Е	F	G	N-Ф
DCF_F_Y_50S	Ф60.5	Ф122	Ф180	30	39	Ф160	202	6_Ф11
DCF_F_Y_62\$	Ф75.5	Ф148	Ф208	35	44	Ф188	230	6_Ф11
DCF_F_Y_76S	Ф99.5	Ф160	Ф227	35	43	Ф200	249	6_Ф11
DCF_F_Y_90S	Ф104	Ф170	Ф227	35	40	Ф219	249	6_Ф11
DCF_F_Y_102S	Ф114	Ф177	Ф227	35	40	Ф219	249	6_Ф11

3) DCF-F-Y-80

